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A B S T R A C T

Predicting whether subjects with mild cognitive impairment (MCI) can convert to Alzheimer’s disease is
significant for personalized treatment development and disease progression delay. Longitudinal and multimodal
data have been recognized for their ability to capture longitudinal variations and provide complementary
information for MCI conversion prediction. However, incomplete or missing data pose a persistent challenge in
effectively utilizing such valuable information. Additionally, early-stage conversion prediction, particularly at
baseline visit (BL), is crucial in clinical practice. Therefore, longitudinal data must only be incorporated during
training to capture disease progression information. To address these challenges, we propose a multi-view
imputation and cross-attention network (MCNet) to integrate data imputation and MCI conversion prediction
in a unified framework. First, a multi-view imputation method combined with adversarial learning is presented
to handle various missing data scenarios and reduce imputation errors. Second, two cross-attention blocks are
introduced to exploit the potential associations in longitudinal and multimodal data. Finally, a multi-task
learning model is established for data imputation, longitudinal classification, and conversion prediction. By
appropriately training the model, disease progression information learned from longitudinal data improves
the MCI conversion prediction that only uses BL data. To verify its effectiveness and flexibility in such MCI
conversion prediction, we test MCNet on independent testing sets and single-modal BL data. Results show that
MCNet outperforms competitive methods with an area under the receiver operating characteristic curve value
of 86.0%. Furthermore, the interpretability of MCNet is demonstrated, indicating its potential as a valuable
tool for incomplete data analysis in MCI conversion prediction.
1. Introduction

Alzheimer’s disease (AD) is characterized by the irreversible impair-
ment of cognitive functions and is one of the most common neurode-
generative diseases among the elderly people (Gaugler et al., 2022).
Mild cognitive impairment (MCI) is commonly regarded as a pro-
dromal stage of AD and a critical period for early diagnosis of this
disease (Scheltens et al., 2021). As reported, approximately 9.6% of
subjects who have MCI are expected to progress to AD annually,
whereas other MCI subjects maintain a stable clinical condition with
time (Abdelnour et al., 2022; Ganguli et al., 2019). Therefore, the
accurate identification of MCI subjects who may progress to AD is
crucial in providing support for delaying the disease progression and
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developing new clinical therapies (Abdelnour et al., 2022). Generally,
based on the criteria of whether MCI subjects convert to AD within
three years, subjects can be classified into stable MCI (sMCI) and
progressive MCI (pMCI) groups (Arco et al., 2021; Bucholc, Titarenko,
Ding, Canavan, & Chen, 2023). Such classification is denoted as MCI
conversion prediction, which is the focus in this study. In clinical
practice, longitudinal and multimodal data are increasing and have
attracted our attention (El-Sappagh, Abuhmed, Islam, & Kwak, 2020).

On the one hand, the integration of longitudinal and multimodal
data provides comprehensive information for early AD diagnosis and
MCI conversion prediction, surpassing the utilization of multimodal or
longitudinal data alone (Jung et al., 2021; Lee, Kang, Nho, Sohn, & Kim,
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2019). Multimodal data, such as magnetic resonance imaging (MRI)
and positron emission tomography (PET) images, can provide comple-
mentary structural and functional information (Arco et al., 2021; Chen
et al., 2022). Given that AD is a progressive disease, early pathological
changes and structural abnormalities over time within longitudinal
variations can be captured by longitudinal data (Bucholc et al., 2023;
Huang, Lai, et al., 2021; Zhang, Wu, et al., 2021). Nevertheless, re-
search has primarily focused on using multimodal neuroimages at
baseline visit (BL) for early AD diagnosis and MCI conversion predic-
tion (Kikuchi et al., 2022; Ko, Jung, Jeon, & Suk, 2022; Zhu, Sun,
Huang, Han, & Zhang, 2021). Moreover, most studies used only a sim-
ple concatenation of multimodal features, which may bring redundant
information and fail to exploit potential associations among different
modalities (El-Sappagh et al., 2020; Venugopalan, Tong, Hassanzadeh,
& Wang, 2021; Zhou, Thung, Zhu, & Shen, 2019). Although several
strategies for integrating multimodal data have been proposed (Arco
et al., 2021; Luo et al., 2023), fusion methods that jointly analyze and
cohesively combine multimodal and longitudinal relationships remain
scarce.

On the other hand, in the use of longitudinal and multimodal data,
missing data remains a common but great challenge, limiting its direct
usage in most conventional machine learning or deep learning methods.
Previous studies proposed to handle this issue by using three types of
strategies: (a) exclude the subjects with missing data (Khan & Zubair,
2022; Lo & Jagust, 2012); (b) employ network characteristics and
special strategies to leverage all available data (Chen et al., 2022; Zhou
et al., 2019); and (c) impute the missing data (Che, Purushotham, Cho,
Sontag, & Liu, 2018; Jung et al., 2021). For strategy (a), valuable
information may be lost when only complete data are used in MCI
conversion prediction (Chen et al., 2022; Pan, Chen, Shen, & Xia,
2021). The methods of type (b) show promising results in effectively
utilizing missing data, but still require complete data as input in
practical applications. For type (c), several studies initially imputed
missing data and subsequently used the imputed data to train a model
for prediction (El-Sappagh et al., 2020; Wang, Qiu, & Yu, 2018).
However, this decoupling two-stage strategy may lead to sub-optimal
results, and the chosen imputation method heavily influence the model
performance (Ghazi et al., 2019; Ma, Li, & Cottrell, 2022). Various
techniques can be used for imputing missing values, such as simple for-
ward/backward filling (Nguyen et al., 2020), matrix factorization based
on singular value decomposition (Anandkumar, Ge, Hsu, Kakade, &
Telgarsky, 2014), and statistical (El-Sappagh et al., 2020) and machine
learning (Zhang, Wu, et al., 2021) methods. Recently, recurrent neural
networks (RNN) have shown advancements in data imputation (Jung
et al., 2021; Nguyen et al., 2020) but necessitate modality-complete
data at BL (Ghazi et al., 2019; Jung et al., 2021; Nguyen et al., 2020).
Unfortunately, many subjects have no available PET images at BL due
to various practical issues (e.g., high cost, poor image quality, and
others) (Liu et al., 2022). Moreover, the estimated data may have errors
that can affect the performance of subsequent tasks (Ghazi et al., 2019;
Ma et al., 2022). Therefore, further reducing the errors of imputed data
remains a problem to be solved. Additionally, previous studies tended
to utilize all available longitudinal data to estimate the disease status
beyond the last time point (Ghazi et al., 2019; Jung et al., 2021; Nguyen
et al., 2020). In clinical practice, MCI conversion prediction must be
achieved in the early stages of disease progression to facilitate timely
intervention, specifically at BL (Albert et al., 2011; Petersen et al.,
2014). On this basis, the model can focus on the prediction performance
at BL without requiring longitudinal data as inputs during testing/usage
phase. Therefore, how to effectively use disease progression informa-
tion in longitudinal data while only BL data are required as inputs at
the model testing phase is also a problem that need consideration.

To address the aforementioned challenges, an end-to-end multi-task
deep learning framework, named multi-view imputation and cross-
attention network (MCNet), is proposed to utilize incomplete longitu-
2

dinal and multimodal data for MCI conversion prediction (i.e., classify
subjects into sMCI and pMCI). The proposed method consists of data
imputation and conversion prediction modules. These two modules
share the same multimodal features extracted from the RNN-based net-
work for multi-task learning, including data imputation, longitudinal
classification, and conversion prediction tasks. First, in the data impu-
tation module, a novel multi-view imputation strategy with adversarial
learning is designed to utilize disease progression information to impute
MRI/PET data from a longitudinal view and apply the associations
between different modalities to impute the PET data from a multimodal
view. Moreover, incorporating adversarial learning is conducive to
increase the realities and reduce the errors of imputed data. Second,
the features obtained from the imputation module are fused by two
unique feature fusion blocks, named cross-attention blocks, for final
MCI conversion prediction. Various missing data scenarios exist in
incomplete longitudinal and multimodal data, which leads to differ-
ences in importance among the information contained in the features.
Therefore, two cross-attention blocks are developed to weigh features
and reflect the information’s importance. Then, the fused features are
used to accomplish longitudinal classification and conversion predic-
tion tasks. With the data imputation strategy and cross-attention blocks,
the proposed method extracts disease progression information from
longitudinal data during training and directly applies the information
on BL data to obtain prediction results without feeding longitudinal
data in the testing phase. In other words, we aim to use disease pro-
gression information that is learned from longitudinal data to improve
performance of MCI conversion prediction at a single time point. Based
on previous reports, no research has combined disease progression
information from longitudinal data and multimodal associations from
multimodal data to achieve adversarial multi-view imputation at all
time points with small errors and integrated classification and predic-
tion tasks in the same framework to achieve joint optimization for MCI
conversion prediction. In summary, the contributions of this work are
as follows:

• Based on incomplete longitudinal and multimodal data, data
imputation and MCI conversion prediction are integrated into
a unified network, and a multi-task learning strategy is intro-
duced to achieve joint optimization and improve the prediction
performance.

• A multi-view imputation strategy is designed for different modal-
ities and time points to achieve data imputation that can cope
with various missing data scenarios. Moreover, the adversarial
learning is incorporated into the imputation strategy to make an
imputed data distribution that is close to the real distribution,
thereby further reducing imputation errors.

• Two cross-attention blocks are proposed to fuse multimodal
features at different time points to capture information impor-
tance at different time points and modalities, thereby further
improving prediction performance.

• With well training, disease progression information learned from
longitudinal data can be leveraged by our proposed method to
complete MCI conversion prediction with BL data in the testing
phase. Hence, our proposed method meets the requirement of
early prediction in clinical practice. Additionally, our model can
still perform well when only single-modal data (e.g., MRI) are
available at BL. The proposed method is trained on two datasets
provided by the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (i.e., ADNI-1 and ADNI-2) and tested on two
external independent datasets (i.e., ADNI-3 and Open Access
Series of Imaging Studies-3 [OASIS-3]). Competitive results are
achieved using the proposed method, which further demon-
strates the well generalized ability of the proposed method.

For clarification and readability of the paper, Table 1 summarizes

the acronyms that appear in the main text.
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Table 1
Acronyms and corresponding explanations.

Acronyms Explanations Acronyms Explanations

ACC Accuracy MAE Mean absolute error
AD Alzheimer’s disease MCI Mild cognitive impairment
ADNI Alzheimer’s disease

neuroimaging initiative
MCNet Multi-view imputation and

cross-attention network
AJRNN Adversarial joint-learning

recurrent neural network
MLP Multilayer perceptron

ANTs Advanced normalization tools MMSE Mini-mental state examination
AUC Area under receiver operating

characteristic curve
MNI Montreal neurological institute

BAC Balanced accuracy MRI Magnetic resonance imaging
BL Baseline visit OASIS Open access series of imaging

studies
BLS Board learning system PET Positron emission tomography
CN Cognitive normal RMSE Root mean square error
DRM Deep recurrent model RNN Recurrent neural networks
DTI Diffusion tensor imaging ROI Region-of-interest
FC Fully connected SVM Support vector machine
FDG-PET Fluorodeoxyglucose positron

emission tomography
pMCI Progressive mild cognitive

impairment
GM Gray matter fMRI Functional magnetic resonance

imaging
GRU Gated recurrent unit sMCI Stable mild cognitive

impairment
LSTM Long short-term memory std Standard deviation

2. Related work

2.1. Multimodal AD-related analysis

Many studies have focused on the applications of multimodal neu-
roimages, which contain complementary information, for AD diagno-
sis (Behrad & Abadeh, 2022; Shi, Zheng, Li, Zhang, & Ying, 2017).
For example, different deep neural networks were first used to learn
high-level features from multimodal data (e.g., PET, MRI, genetic data,
and others) at BL. Then, the features learned from the different modal-
ities were concatenated directly for final AD detection (Venugopalan
et al., 2021). Zhou et al. (2019) proposed a three-stage deep feature
learning and fusion framework to accomplish multi-scale feature fu-
sion for AD prediction. Better prediction performance was achieved
using multimodal data than single-modal data. However, the direct
concatenation of multimodal features may fail to take full advantage
of the information from different modalities (Ning, Xiao, Feng, Chen,
& Zhang, 2021). Zu, Wang, Zhou, Wang, and Zhang (2018) utilized
multi-kernel learning to combine multimodal data for AD classification.
Furthermore, Leng et al. (2023) developed a cross enhanced fusion
mechanism to emphasize the correlation and complementarity between
multimodal features for AD diagnosis. Although these strategies can be
used to effectively combine multimodal data, their effects on the feature
fusion of longitudinal and multimodal data need further investigation.

In the longitudinal and multimodal study, associations among differ-
ent modalities and different time points should be considered. Inspired
by the self-attention mechanism (Vaswani et al., 2017), we introduce
two cross-attention blocks to exploit the importance of the features
extracted from different modalities at different time points and to
enhance the performance of MCI conversion prediction.

2.2. Longitudinal AD-related analysis

An increasing number of studies attempted to utilize these data for
AD-related analysis with the increasing amount of available longitudi-
nal data collected at follow-up time points (Abdelaziz, Wang, & Elazab,
2021; Brand, Nichols, Wang, Shen, & Huang, 2019; Huang, Yang, Feng,
& Chen, 2017; Zhang, Wu, et al., 2021). Some studies explored the
use of traditional machine learning methods. Huang, Chen, Yu, Lai,
and Feng (2021) proposed a novel temporal group sparsity regression
and additive model to identify the associations between longitudinal
imaging and genetic data for the detection of potential AD biomarkers.
More recently, deep learning methods have shown great potential in AD
3

analysis and have been applied to related classification and regression
tasks with promising performance (El-Sappagh et al., 2020; Jung et al.,
2021). Among them, RNN-based deep learning methods are often used
in longitudinal studies. Nevertheless, conventional RNNs are designed
to be used with complete data; incomplete data still present serious
problems for the applications of RNN. Some studies tried to alleviate
the negative impact of this problem by taking advantage of RNN to
deal with variable-length series data for imaging feature extraction and
AD diagnosis but directly ignored the missing data issue (Huang, Lai,
et al., 2021). Che et al. (2018) designed a gated recurrent unit with
decay (GRU-D) to introduce a decay mechanism using information on
the interval and location of missing values. Then, they combined decay
rates with the incomplete longitudinal data to accomplish classification.
Moreover, Ghazi et al. (2019) proposed a generalized backpropagation
through time algorithm for long short-term memory (LSTM), and this
method can handle missing input and output values. All the missing
values of longitudinal data were initialized with zeros.

Although certain attempts have been made in these methods, miss-
ing data issue is only considered in longitudinal view, whereas dis-
carded in multimodal view. Hence, further exploration is still needed
to reduce the impact of missing data issue on the final prediction task.

2.3. Data imputation

Missing data is a common issue for longitudinal and multimodal
data and may decrease the accuracy of MCI conversion prediction. El-
Sappagh et al. (2020) tried to solve this issue by discarding the subjects
with serious missing data conditions and using the k-nearest neighbor
algorithm to impute missing values for remaining subjects. However,
this kind of data imputation method is a decouple two-stage methodol-
ogy, which may lead to sub-optimal results (Ma et al., 2022). Therefore,
some studies trained a unified model to accomplish data imputation
and prediction or classification simultaneously. Nguyen et al. (2020)
used the temporal dependencies of RNN to impute a set of longitu-
dinal data and performed classification in a unified model. However,
only temporal associations were considered in this method, and the
correlations between different modalities at a time point may be ig-
nored. Jung et al. (2021) integrated data imputation and longitudinal
data classification into a unified framework by utilizing information
on the interval between missing values, the location of missing values,
and multivariate relations, where the relations of different modalities
can be reflected by the multivariate relations and reasonable data
imputation, and classification results can be achieved by this method.
Additionally, advanced data imputation/prediction methods have been
developed involving the application of deep learning techniques in
other fields (Zhang, Zhao, & He, 2021). For instance, Zhang et al. pro-
posed a method that combines generalized learning systems with LSTM
for predicting battery capacity and its remaining useful life, which
can be extended and adapted for medical data analysis (Zhao, Zhang,
& Wang, 2022). However, estimation errors of imputation data may
accumulate in these unified training methods during the feedforward
of the RNN (Bengio, Vinyals, Jaitly, & Shazeer, 2015). Moreover, the
missing data issue at BL cannot be addressed in previous studies.

Generative adversarial network has unparalleled advantages in data
generation. Therefore, Ma et al. (2022) introduced the adversarial
learning strategy into the data imputation and classification framework
to solve the accumulated errors problem, which can further improve the
classification performance. Inspired by this idea, we also introduce an
adversarial loss in the proposed method. This study uses such a strategy
for the first time in AD longitudinal and multimodal data imputation.
Moreover, we design a novel multi-view imputation method according
to the specific scenarios of missing data to effectively impute missing
data and solve the missing data issue at BL.

Additionally, these methods were not designed to consider how
to complete the prediction using only BL data during the model test-
ing/usage phase. Specifically, most existing methods still require lon-

gitudinal data as inputs in the testing/usage phase (El-Sappagh et al.,
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2020; Nguyen et al., 2020). Instead of using longitudinal data during
testing phase, the proposed method tries to learn helpful disease pro-
gression information from longitudinal data when training and then
uses the learned information to improve MCI conversion prediction
at BL when testing. We hypothesize that even if longitudinal data
are limited, the underlying information of disease trajectories can be
leveraged by deep learning approaches. When the model is properly
trained, the model is able to judge the trend of the disease from BL
data through the learned pattern of disease progression and utilized
this auxiliary knowledge to enhance the performance of MCI conversion
prediction. Therefore, only multimodal data at BL or even single modal
data at BL are needed in the testing phase in the proposed method.

3. Materials

The brain imaging data used in this paper were obtained from the
ADNI (https://www.adni.loni.usc.edu/) and OASIS-3 databases (https:
//www.oasis-brains.org/). A total of 1387 subjects with T1-weighted
MRI and fluorodeoxyglucose positron emission tomography (FDG-PET)
images in the three ADNI subsets, namely, ADNI-1, ADNI-2, and ADNI-
3, were collected in this study. For ADNI-1 and ADNI-2, images at
BL and at 6, 12, 24, and 36 months were included when available,
whereas only images at BL provided by ADNI-3 were included as the
independent testing set. Specifically, subjects that had MRI images at BL
and more than two other time points were included, and the available
status of PET images was not considered as a criterion for selecting
subjects for ADNI-1 and ADNI-2. Moreover, an additional 143 subjects
obtained from OASIS-3 were used as another independent testing set.
In terms of mini-mental state examination (MMSE) scores and clinical
dementia rating, the clinical status of a subject at a time point can
be divided into three categories, i.e., cognitive normal (CN), MCI, and
AD. In this study, all subjects were further categorized into four groups
based on the individual clinical status at BL and future time points, as
follows: (a) CN: the subjects were diagnosed as CN at BL and remained
CN afterwards; (b) sMCI: the subjects were diagnosed as MCI at all time
points; (c) pMCI: the subjects were diagnosed as MCI at BL and then
converted to AD within three years; and (d) AD: the subjects had a
clinical status of AD at all time points. The number of enrolled subjects
and more demographic information are shown in Table 2. Subjects with
reverse conversion of clinical status were removed. The details of the
subject number with different image modalities at different time points
are listed in Table 3.

Raw MRI images acquired by 1.5T/3T scanners and PET images
preprocessed by ADNI were downloaded. Then, all MRI images were
processed through the following procedures (Chen et al., 2022): (a)
anterior commissure-posterior commissure correction by using MIPAV
software (https://mipav.cit.nih.gov/); (b) image intensity inhomogene-
ity correction by using N4 algorithm; (c) skull stripping via a ro-
bust brain extraction network named HD-BET (Isensee et al., 2019);
(d) registering images to Montreal Neurological Institute (MNI) space
via advanced normalization tools (ANTs) (https://github.com/ANTsX/
ANTs); (e) segmentation of three main tissues, i.e., gray matter (GM),
white matter, and cerebrospinal fluid, by using Atropos algorithm in
ANTs; (f) labeling 90 regions-of-interest (ROIs) on all registered images
based on the automated anatomical label atlas of MNI space; and (g)
computing the GM tissue volume of each ROI in the labeled images.
Subsequently, PET images obtained from OASIS-3 were preprocessed
in the same way as those obtained from ADNI (Jagust et al., 2015).
Finally, preprocessed PET images were aligned to their corresponding
MRI by using co-registration strategy and the average intensity value
of each ROI was calculated as a PET feature. Thus, 90-dimensional ROI
features were separately extracted from the MRI and PET data for each
4

subject. a
Table 2
Demographic information of enrolled subjects. The age and MMSE scores are presented
by mean ± standard deviation (std).

Dataset Total Category Number Male/Female Age MMSE

ADNI-1 543

CN 165 90/75 75.3 ± 5.2 29.0 ± 1.1
sMCI 144 91/53 74.6 ± 7.5 27.3 ± 1.6
pMCI 116 68/48 73.8 ± 6.9 26.8 ± 1.8
AD 118 60/58 75.1 ± 7.8 23.4 ± 1.9

ADNI-2 758

CN 255 129/126 73.7 ± 5.8 29.1 ± 1.2
sMCI 286 163/123 71.5 ± 7.5 28.2 ± 1.6
pMCI 104 57/47 73.4 ± 6.7 27.6 ± 1.9
AD 113 69/44 74.3 ± 7.8 23.8 ± 2.5

ADNI-3 86 sMCI 73 44/29 75.5 ± 7.6 28.5 ± 1.2
pMCI 13 8/5 74.0 ± 6.6 26.8 ± 2.8

OASIS-3 143

CN 65 37/28 73.7 ± 8.6 29.2 ± 1.0
sMCI 67 27/21 74.9 ± 5.6 28.4 ± 1.9
pMCI 37 19/4 75.6 ± 7.9 27.3 ± 2.3
AD 7 4/3 76.1 ± 5.6 24.4 ± 1.3

Table 3
Number of available subjects for different modalities at different time points in ADNI-1
and ADNI-2, where M06, M12, M24, and M36 represent 6, 12, 24, and 36 months,
respectively.

Dataset BL M06 M12 M24 M36

ADNI-1 (MRI/PET) 543/292 534/274 527/267 451/225 284/134
ADNI-2 (MRI/PET) 758/606 534/0 745/111 580/297 396/1

4. Method

A multi-task learning framework, named MCNet, is proposed for
joint data imputation, longitudinal classification, and MCI conversion
prediction. Fig. 1 presents an overview of the proposed method con-
sisting of two modules. In the first module (Fig. 1(a)), data imputation
was conducted on the MRI and PET ROI features from the multi-views
(i.e., longitudinal and multimodal views) using a MinimalRNN-based
network. Moreover, an adversarial learning block was proposed to
reduce imputation errors and increase the realities of the imputed data.
Therefore, longitudinal and multimodal features (hidden features 𝑯MRI

and 𝑯PET in Fig. 1) can be well explored with the imputed data. In
the second module (Fig. 1(b)), two cross-attention blocks were applied
to effectively fuse the multimodal and longitudinal features shared
from the data imputation module for longitudinal classification and
MCI conversion prediction. On the one hand, multimodal features at
each time point were fed into the first cross-attention block to fuse
multimodal features and capture multimodal associations for longitu-
dinal classification. On the other hand, the fused multimodal features
at all time points were fed into the second cross-attention block to
exploit potential disease progression information for MCI conversion
prediction. The model was trained on all available longitudinal and
multimodal data in the training phase, and only data at BL were used as
inputs in the testing phase. The proposed method still performed well
when PET data was missing at BL.

4.1. Notations

In this study, matrices, vectors, and scalars are denoted as bold
uppercase letters, boldface lowercase letters, and normal italic letters,
respectively. Moreover, all scalars about time points are enclosed in
parentheses. The ROI features of MRI and PET data can be represented
as 𝑿 =

{

𝑿𝑆}
𝑆=MRI,PET, where 𝑆 represents the image modality and

𝑿𝑆 =
{

𝒙𝑆(1),… ,𝒙𝑆(𝑡),… ,𝒙𝑆(𝑇 )
}

∈ R𝑁×𝑇×𝐷. 𝑁 , 𝑇 , and 𝐷 are the sub-
ject number, number of time points, and dimension of ROI features,
respectively. Missing time points often appear in longitudinal MRI and
PET data, and mask vectors 𝑴𝑆 =

{

𝒎𝑆
(1),… ,𝒎𝑆

(𝑡),… ,𝒎𝑆
(𝑇 )

}

are applied
to indicate whether data exist in a time point, where 𝒎𝑆

(𝑡) ∈ R𝑁×1.
In particular, the value in 𝒎𝑆

(𝑡) is 1 when 𝒙𝑆(𝑡) exists and 0 when 𝒙𝑆(𝑡)
s missing. Moreover, the longitudinal and the clinical status labels

{ }𝑇 𝑁×1
re denoted as 𝒚(𝑡) 𝑡=1 and 𝑪, respectively, where 𝒚(𝑡) ∈ R is

https://www.adni.loni.usc.edu/
https://www.oasis-brains.org/
https://www.oasis-brains.org/
https://www.oasis-brains.org/
https://mipav.cit.nih.gov/
https://github.com/ANTsX/ANTs
https://github.com/ANTsX/ANTs
https://github.com/ANTsX/ANTs
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Fig. 1. Overview of the proposed framework: (a) Data imputation module combined with adversarial learning; (b) Conversion prediction module for longitudinal classification and
MCI conversion prediction. In the training phase, MRI and PET data at different time points were trained using modules (a) and (b), where 𝐓𝐫MRI and 𝐓𝐫PET represent the MRI
and PET images of training subjects, respectively, with a total of 1171 training subjects. In the testing phase, only data at BL were used as inputs, where PET data at BL can
either be available or missing; 𝐓𝐬MRI and 𝐓𝐬PET represent the MRI and PET images of testing subjects, respectively, with 130 subjects for ADNI-1/2, 86 subjects for ADNI-3, and
104 subjects for OASIS-3.
Table 4
Main notations used in this study.

Symbol Description Symbol Description

Notations of inputs (b) Notations in multi-view imputation

𝐓𝐫MRI , 𝐓𝐫PET MRI and PET images of training subjects Concat (⋅) The operation of feature concatenation
𝐓𝐬MRI , 𝐓𝐬PET MRI and PET images of testing subjects 𝑾 PET

cs , 𝑾 lg Learnable weighted coefficients

Notations of modality features 𝐹mini (⋅) The update function of MinimalRNN

𝐾 Image modality 𝐼 (⋅) The process of data imputation
𝑁 Total number of subjects ‖⋅‖ Mean absolute error
𝑇 Total number of time points 𝑒𝑠𝑡 Estimation loss function

𝐷 Dimension of ROI features Notations in data imputation module
𝒙𝑆
(𝑡) ROI features of modality 𝑆 at 𝑡th time point (c) Notations in adversarial learning

𝑿𝑆 =
{

𝒙𝑆
(1) ,… ,𝒙𝑆

(𝑡) ,… ,𝒙𝑆
(𝑇 )

}

ROI features of modality 𝑆 at all time points log (⋅) Logarithmic function
𝑿 =

{

𝑿𝑆}

𝑆=MRI,PET ROI features of all modalities at all time
points

𝑝imp(𝒖) Imputed data distribution

𝒎𝑆
(𝑡) Mask vector of modality 𝑆 at 𝑡th time point 𝑝real(𝒖) Real data distribution

𝑴𝑆 =
{

𝒎𝑆
(1) ,… ,𝒎𝑆

(𝑡) ,… ,𝒎𝑆
(𝑇 )

}

Mask vectors of modality 𝑆 at all time points Ds(⋅) Discriminator
𝒚(𝑡) Longitudinal label at 𝑡th timepoint D Discriminator loss function
𝑪 Conversion label of a subject adv Adversarial loss function

Notations in data imputation module Notations in conversion prediction module

(a) Notations in MinimalRNN 𝐽 The number of heads in first cross-attention blocks

𝛷 (⋅) A network for mapping ROI features into a
latent representation

𝐽 ′ The number of heads in second cross-attention blocks

𝒛𝑆(𝑡) Latent representation of modality 𝑆 at 𝑡th
time point

𝐷′ Dimension of hidden features

𝒈𝑆(𝑡) Update gate of modality 𝑆 𝑯 (𝑡) Concatenated hidden features at 𝑡th time point
𝒉𝑆
(𝑡) Hidden feature of modality 𝑆 at 𝑡th time

point, i.e., output of MinimalRNN
𝑸𝑗

(𝑡) , 𝑲 𝑗
(𝑡) , 𝑽 𝑗

(𝑡) Three projection matrices of head 𝑗 at 𝑡th time point
in first cross-attention block

𝑯𝑆 =
{

𝒉𝑆
(1) ,… ,𝒉𝑆

(𝑡) ,… ,𝒉𝑆
(𝑇 )

}

Hidden features of modality 𝑆 at all time
points

𝑨𝑗
(𝑡) Attention matrix of head 𝑗 at 𝑡th time point in first

cross-attention block
𝑾 𝑆

𝑥 , 𝑾 𝑆
ℎ , 𝑾 𝑆

𝑧 , 𝒃𝑆𝑥 Learnable weight matrices and bias vectors of
modality 𝑆 in minimalRNN

𝑯̃ (𝑡) Fused features of first cross-attention block

𝜎 (⋅) Sigmoid activation function 𝑯̃ Concatenation of fused features of first cross-attention
block

tanh (⋅) Hyperbolic tangent function 𝑸̂𝑗′ , 𝑲̂ 𝑗′ , 𝑽̂ 𝑗′ Three projection matrices of head 𝑗′ in second
cross-attention block

⊙ Element-wise product 𝑨̂𝑗′ Attention matrix of head 𝑗′ in second cross-attention
block

Notations in data imputation module 𝑯̂ Final features for MCI conversion prediction
(b) Notations in multi-view imputation 𝑾 𝑗

𝑞 , 𝑾 𝑗
𝑘 , 𝑾 𝑗

𝑣 , 𝑾 𝑎𝑡1 , 𝑾 𝑎𝑡2 ,
𝑾 𝑐𝑙𝑠 , 𝑾 𝑐 , 𝒃𝑎𝑡1 , 𝒃𝑎𝑡2 , 𝒃𝑐𝑙𝑠 , 𝒃𝑐

Learnable weight matrices and bias vectors in
conversion prediction module

𝒙̃PET
cs,(𝑡) Estimated ROI features of PET at 𝑡th time

point from the multimodal view
𝒚̂(𝑡) Longitudinal prediction result at 𝑡th time point

𝒙̃PET
lg,(𝑡) Estimated ROI features of PET at 𝑡th time

point from the longitudinal view
𝑪̂ Conversion prediction results

𝒙̂𝑆
(𝑡) Final estimated ROI features of modality 𝑆 at

𝑡th time point
Sof tmax (⋅) Softmax activation function

𝒖𝑆(𝑡) Imputed ROI features of modality 𝑆 at 𝑡th
time point

cls Longitudinal classification loss function

𝑼𝑆 =
{

𝒖𝑆(1) ,… , 𝒖𝑆(𝑡) ,… , 𝒖𝑆(𝑇 )
}

Imputed ROI features of modality 𝑆 at all
time points

pred Conversion prediction loss function

𝛼, 𝛽 Learnable weighted coefficients  Overall loss function
𝑾 PET

cs , 𝑾 lg , 𝒃PETcs , 𝒃lg Learnable weight matrices and bias vectors in
multi-view imputation

𝜆, 𝜁 , 𝜉 The hyperparameters in the overall loss function
5
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Fig. 2. Illustration of data imputation module. The parameters in all time points are
shared, i.e., the same memory cells in figure share the same parameters.

longitudinal label at 𝑡th time point. Specifically, if the clinical status is
unchanged, 𝒚(𝑡) = 0; otherwise, 𝒚(𝑡) = 1. The longitudinal labels are used
in the longitudinal classification task. 𝑪 ∈ R𝑁×1 indicates the clinical
status of a subject. For instance, if the clinical status of a subject is
sMCI, then 𝑪 = 0. Otherwise, if it is pMCI, then 𝑪 = 1. Moreover, 𝑪 is
applied to MCI conversion prediction. The main notations used in this
study are listed in Table 4.

4.2. Data imputation module

4.2.1. Minimal recurrent neural network
We briefly considered MinimalRNN, which is used as the backbone

network of the proposed method. MinimalRNN is a distinctive RNN ar-
chitecture that adopts the minimum number of operations within RNN
without sacrificing performance (Chen, 2017). Moreover, MinimalRNN
can be used to capture disease progression information, the trainability
of which can also be guaranteed.

A single MinimalRNN is a chain structure composed of several
memory cells, where each cell corresponds to a time point. Moreover,
all cells share the same parameters. For each cell, the input 𝒙𝑆(𝑡) is
first fed into a fully connected (FC) network 𝛷 (⋅) to generate a latent
representation 𝒛𝑆(𝑡). Through this operation, the representations are
confined to move within this latent space (Chen, 2017). Given 𝒛𝑆(𝑡),
the weight of update gate 𝒈𝑆(𝑡) can be simply learned with a sigmoid
function 𝜎 (⋅). Moreover, the update gate 𝒈𝑆(𝑡) weighs the contributions
of the previous hidden feature 𝒉𝑆(𝑡−1) and the latent representation 𝒛𝑆(𝑡)
toward the current hidden feature 𝒉𝑆(𝑡). Disease progression information
can be continuously captured from the data during the forward process
from the hidden feature𝒉𝑆(𝑡−1) to 𝒉𝑆(𝑡). Therefore, the update process can
be formulated as:

𝒛𝑆(𝑡) = tanh
(

𝛷
(

𝒙𝑆(𝑡)
))

= tanh
(

𝑾 𝑆
𝑥 𝒙

𝑆
(𝑡) + 𝒃𝑆𝑥

)

(1)

𝒈𝑆(𝑡) = 𝜎
(

𝑾 𝑆
ℎ𝒉

𝑆
(𝑡−1) +𝑾 𝑆

𝑧 𝒛
𝑆
(𝑡)

)

(2)

𝒉𝑆(𝑡) = 𝒈𝑆(𝑡) ⊙ 𝒉𝑆(𝑡−1) +
(

1 − 𝒈𝑆(𝑡)
)

⊙ 𝒛𝑆(𝑡) (3)

where 𝑾 𝑆
𝑥 and 𝒃𝑆𝑥 denote the parameters of the embedding operation,

𝑾 𝑆
ℎ and 𝑾 𝑆

𝑧 denote the parameters related to update gate 𝒈𝑆(𝑡), and ⊙ is
the element-wise product. Finally, the hidden features at all time points
can be denoted as 𝑯𝑆 =

{

𝒉𝑆(1),… ,𝒉𝑆(𝑡),… ,𝒉𝑆(𝑇 )
}

.

4.2.2. Multi-view imputation
In this study, longitudinal and multimodal imaging data were used

for accurate MCI conversion prediction. However, the missing data
issue from longitudinal and multimodal views is the main limitation
when using this type of data. Based on our observations on the ADNI
6

datasets, the cases of missing data can be divided into three main
scenarios: (a) PET data missing at BL; (b) MRI data missing at 𝑡th time
point; and (c) PET data missing at 𝑡th time point. We designed a novel
multi-view data imputation method that is different from traditional
data imputation methods to impute missing values in different cases
and address the complexity of the missing data issue.

Compared with longitudinal MRI images, more serious missing data
issue appeared in longitudinal PET images. Therefore, as shown in
Fig. 2, we adopted two separate stacked multi-layer MinimalRNNs to
capture the different longitudinal features of different modalities and
then impute data. MinimalRNN cannot perform feedforward when data
are unavailable at BL. Therefore, the missing data issue of PET data
at BL (scenario (a)) was considered first. We first imputed the PET
data at BL from the multimodal view by using a FC network (FC1 in
Fig. 2) with hyperbolic tangent activation function due to the nonlinear
relationship between PET and MRI data. We utilized the hidden feature
𝒉MRI
(𝑡) encoded from the MRI data at BL to estimate the PET data at BL:

𝒙̃PETcs,(𝑡) = tanh
(

𝑾 PET
cs 𝒉MRI

(𝑡) + 𝒃PETcs

)

(4)

where 𝑾 PET
cs , and 𝒃PETcs are learnable parameters of FC network for PET

estimation at BL.
For MRI data missing at 𝑡th time point (scenario (b)), the potential

relationship (i.e., disease progression information) between adjacent
time points was utilized for the imputation of the longitudinal view.
Previous disease progression information up to (𝑡− 1)th time point was
contained in the hidden features 𝒉MRI

(𝑡−1) and 𝒉PET(𝑡−1). Accordingly, MRI
data can be estimated from the longitudinal view. Specifically, the MRI
data 𝒙̂MRI

(𝑡) of the 𝑡th time point were estimated using the concatenation
of hidden features 𝒉MRI

(𝑡−1) and 𝒉PET(𝑡−1). Meanwhile, the PET data 𝒙̃PETlg,(𝑡) of
the same time point can also be estimated simultaneously from the
longitudinal view. This process was implemented through a FC network
(FC2 in Fig. 2) and can be formulated as follows:

𝒙̂MRI
(𝑡) , 𝒙̃PETlg,(𝑡) = 𝑾 lgConcat

(

𝒉MRI
(𝑡−1),𝒉

PET
(𝑡−1)

)

+ 𝒃lg (5)

where 𝑾 lg and 𝒃lg are learnable parameters for MRI/PET longitudi-
nal estimation, and Concat (⋅) represents feature concatenation. In this
study, our focus was solely on imputation from the longitudinal view
for MRI data. In clinical practice, an MRI image is typically available
at a given time point, whereas the corresponding PET image may be
missing from the multimodal view.

For PET data missing at 𝑡th time point (scenario (c)), we adaptively
combined the two estimated values obtained from the longitudinal
and multimodal views to calculate the final estimated value at 𝑡th
time point. In this way, we leveraged the complementary information
from different modalities at the current time point and disease progres-
sion information from previous time points for multi-view imputation.
Specifically, we can take advantage of the hidden features 𝒉MRI

(𝑡−1) and
𝒉PET(𝑡−1) propagated from the previous (𝑡 − 1) time points as Eq. (5) and
utilize the hidden feature encoded from the MRI data at the 𝑡th (𝑡 > 1)
time point as Eq. (4) to estimate the PET data (weighted summation
operation in Fig. 2) except for BL:

⎧

⎪

⎨

⎪

⎩

𝒙̂PET(𝑡) = 𝛼
(

𝒙̃PETcs,(𝑡)

)

+ 𝛽
(

𝒙̃PETlg,(𝑡)

)

, if 𝑡 > 1

𝒙̂PET(𝑡) = 𝒙̃PETcs,(𝑡), if 𝑡 = 1.
(6)

where 𝛼 and 𝛽 are learnable weighted coefficients, and 𝛼 + 𝛽 = 1.
With the estimated PET and MRI data 𝒙̂𝑆(𝑡) and mask vector 𝒎𝑆

(𝑡),
we can impute missing data of both modalities at all time points.
Specifically, the imputed data 𝒖𝑆(𝑡) at 𝑡th time point can be defined as:

𝒖𝑆(𝑡) = 𝒎𝑆
(𝑡) ⊙ 𝒙𝑆(𝑡) +

(

1 −𝒎𝑆
(𝑡)

)

⊙ 𝒙̂𝑆(𝑡) (7)

After the imputation steps, the update equation of MinimalRNN can
be formulated as:

𝒉𝑆(𝑡) = 𝐹mini

(

𝒉𝑆(𝑡−1), 𝐼
(

𝒙𝑆(𝑡),𝒎
𝑆
(𝑡),𝒉

𝑆
(𝑡−1)

))

= 𝐹
(

𝒉𝑆 , 𝒖𝑆
) (8)
mini (𝑡−1) (𝑡)
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where 𝐼 (⋅) represents the process of data imputation, and 𝐹mini (⋅)
represents the update function of MinimalRNN as listed in Eqs. (1)–(3).

Therefore, we can obtain the complete longitudinal MRI and PET
data 𝑼𝑆 =

{

𝒖𝑆(1),… , 𝒖𝑆(𝑡),… , 𝒖𝑆(𝑇 )
}

and corresponding hidden features
𝑯𝑆 through the imputation module. Finally, mean absolute error
(MAE) was used to measure the loss between the estimated data and
the real data, which can be defined as:

L𝑒𝑠𝑡 =
𝑇
∑

𝑡=1

{MRI,PET}
∑

𝑆

(

‖

‖

‖

𝒙𝑆(𝑡) − 𝒙̂𝑆(𝑡)
‖

‖

‖1
⊙𝒎𝑆

(𝑡)

)

(9)

4.2.3. Adversarial learning
Although multi-view estimation was applied to the estimation of

longitudinal and multimodal ROI features, some estimation errors still
existed. These errors may be accumulated in the feedforward of Mini-
malRNN. Thus, an adversarial learning strategy was incorporated into
the proposed method to alleviate this dilemma. The adversarial learn-
ing block can be defined as a minimax game. Our goal was to learn an
imputed data distribution 𝑝imp(𝒖) that matched the real data distribu-
tion 𝑝real(𝒖).

Specifically, we added a discriminator consisting of a multilayer
perceptron (MLP) with a sigmoid function. The primary objective of
this addition was to enforce the close approximation of 𝑝imp(𝒖) to 𝑝real(𝒖)
by fooling the discriminators, thereby mitigating the negative impact of
missing values. The supervision signal was provided by mask vectors.
Thus, the discriminator loss can be defined as follows:

LD = −
[

E𝒙∼𝑝real(𝒖) log (Ds (𝒙)) + E𝒙̂∼𝑝imp(𝒖) log (1 − Ds(𝒙̂))
]

= −
𝑇
∑

𝑡=1

{MRI,PET}
∑

𝑆
𝒎𝑆

(𝑡) ⊙ log
(

Ds
(

𝒖𝑆(𝑡)
))

−
𝑇
∑

𝑡=1

{MRI,PET}
∑

𝑆

(

1 −𝒎𝑆
(𝑡)

)

⊙ log
(

1 − Ds
(

𝒖𝑆(𝑡)
))

(10)

where Ds(⋅) denotes the discriminator function and its output is the
estimated mask probability. Therefore, the estimated probability for
the real data should be maximized to 1, and the estimated probability
for the imputed data should be minimized to 0. Then, we introduced
an adversarial loss in the data imputation stage to let MinimalRNN
maximize the probability of the discriminator output, which will be
backpropagated to further optimize the parameters of the MinimalRNN:

Ladv =
𝑇
∑

𝑡=1

{MRI,PET}
∑

𝑆

(

1 −𝒎𝑆
(𝑡)

)

⊙ log
(

1 − Ds
(

𝒖𝑆(𝑡)
))

(11)

Thus, our model first updated the discriminators Ds(⋅) to distinguish
the real data from the imputed data with LD and then updated Mini-
malRNNs with Ladv. Notably, we considered that the case of missing
data in the testing phase as an extreme scenario with only BL data.
By leveraging the disease progression information and multimodal
correlations learned during training phase, as well as the proposed im-
putation strategy, we can obtain longitudinal and multimodal features
for prediction based solely on the available BL data.

4.3. Conversion prediction module

Our main goal was to perform MCI conversion prediction, that
is, to classify subjects into sMCI and pMCI at BL using the proposed
method. Thus, we designed a conversion prediction module to capture
the longitudinal and multimodal associations and then developed two
cross-attention blocks to fuse the longitudinal and multimodal features
effectively. Data imputation module and conversion prediction modules
share the same features extracted by MinimalRNNs. In this way, we can
simply implement a multi-task learning strategy. We accomplished one
of the tasks (i.e., data imputation task) in the data imputation module.
In this module, besides MCI conversion prediction, we added another
7

auxiliary task (i.e., longitudinal classification) to determine whether
the clinical status of the subjects had changed at each time point.
Specifically, this task can be used to exploit predictive representation
𝒉𝑆(𝑡) and help the training of the first cross-attention block at each time
point, which can contribute to improving the performance of MCI con-
version prediction. In conversion prediction module, we developed two
cross-attention blocks for feature fusion to effectively combine longitu-
dinal and multimodal information. Specifically, the first cross-attention
block was mainly used to explore the relationships among different
modalities and fuse the multimodal features of each time point, to
determine the importance of different modalities for longitudinal clas-
sification/conversion prediction tasks; the second cross-attention block
was mainly used to investigate the importance of fused multimodal
features from different time points for MCI conversion prediction, and
fuse the multimodal features of all time points.

In the first cross-attention block, the hidden features were fused
from the multimodal view at each time point through the self-attention
mechanism, which was based on a multi-head attention strategy. For
head 𝑗, the concatenated hidden features 𝑯 (𝑡) = Concat

(

𝒉MRI
(𝑡) ,𝒉PET(𝑡)

)

∈
R𝑁×2×𝐷′ at 𝑡th time point was first translated to three matrices, namely,
𝑸𝑗

(𝑡) ∈ R𝑁×2×(𝐷′∕𝐽 ), 𝑲𝑗
(𝑡) ∈ R𝑁×2×(𝐷′∕𝐽 ), and 𝑽 𝑗

(𝑡) ∈ R𝑁×2×(𝐷′∕𝐽 ),
with three projection matrices (i.e., 𝑾 𝑗

𝑞 ,𝑾
𝑗
𝑘,𝑾

𝑗
𝑣 ∈ R𝐷′×(𝐷′∕𝐽 ) for all

subject), where 𝐽 is the number of heads, and 𝐷′ is dimension of hidden
features. Then, the attention matrices 𝑨𝑗

(𝑡) of different heads can be
calculated with 𝑸𝑗

(𝑡), 𝑲
𝑗
(𝑡), and 𝑽 𝑗

(𝑡) at each head as follows:

𝑨𝑗
(𝑡) = sof tmax

(

𝑸𝑗
(𝑡)𝑲

𝑗
(𝑡)

T/
(

√

𝐷′
/

𝐽
))

𝑽 𝑗
(𝑡) (12)

ext, all heads were concatenated together on feature dimensions and
ed into a FC layer to obtain the residual features, which were used to
dd to the original features 𝑯 (𝑡) to obtain fused features:

̃ (𝑡) =
(

𝑾 at1Concat
(

𝑨1
(1)...,𝑨

𝑗
(𝑡),… ,𝑨𝐽

(𝑇 )

)

+ 𝒃at1
)

+𝑯 (𝑡) (13)

here 𝑾 at1 ∈ R𝐷′×𝐷′ and 𝒃at1 ∈ R𝐷′×1 are the parameters of the FC
ayer for the concatenated attention matrices. Moreover, all subjects
nd both modalities shared the same 𝑾 at1 and 𝒃at1 . The fused features
an be used to classify whether the clinical status changed according
o 𝑯̃ (𝑡) at 𝑡th time point:

̂ (𝑡) = sof tmax
(

𝑾 cls𝑯̃ (𝑡) + 𝒃cls
)

(14)

here 𝑾 cls and 𝒃cls are the learnable parameters for MRI and PET
ongitudinal classification, and Sof tmax (⋅) denotes softmax activation
unction. The universal cross-entropy loss for this task is defined as:

cls = −
𝑇
∑

𝑡=1
𝒎MRI

(𝑡) ⊙
(

𝒚(𝑡) log
(

𝒚̂(𝑡)
)

+
(

1 − 𝒚(𝑡)
)

log
(

1 − 𝒚̂(𝑡)
))

(15)

where 𝒚(𝑡) and 𝒚̂(𝑡) are the true and estimated probabilities of a clinical
status’ change at 𝑡th time point.

Then, conversion prediction task was incorporated into the pro-
posed method. The head number of the second cross-attention block
was set as 𝐽 ′. Specifically, the features in all time points were con-
catenated to prevent the loss of disease progression information at the
early time points, where the concatenated features 𝑯̃ = Concat

(

𝑯̃ (1),
… , 𝑯̃ (𝑡),… , 𝑯̃ (𝑇 )

)

∈ R𝑁×𝑇×2𝐷′ were fed into the second cross-attention
block to integrate longitudinal and multimodal information. Simi-
lar to the first cross-attention block, three matrices, namely, 𝑸̂𝑗′ ∈
R𝑁×𝑇×(2𝐷′∕𝐽 ′), 𝑲̂𝑗′ ∈ R𝑁×𝑇×(2𝐷′∕𝐽 ′), and 𝑽̂ 𝑗′ ∈ R𝑁×𝑇×(2𝐷′∕𝐽 ′), were used
to calculate the attention matrix 𝑨̂𝑗′ ∈ R𝑁×𝑇×(2𝐷′∕𝐽 ′) in head 𝑗′. After
concatenating the attention matrices from 𝐽 ′ heads, the concatenated
attention matrix was fed into a FC layer with parameters 𝑾 at2 ∈
R2𝐷′×2𝐷′ and 𝒃at2 ∈ R2𝐷′×1, and then final features 𝑯̂ ∈ R𝑁×𝑇×2𝐷′ for
MCI conversion prediction were obtained. Hence, the prediction results
were defined as:

𝑪̂ = sof tmax
(

𝑾 𝑯̂ + 𝒃
)

(16)
c c
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Table 5
Details of different testing sets.

Denotation Included Data Usage Subject number

ADNI-1/2-A Longitudinal data (incomplete BL data) Section 5.3.1 130 MCI
ADNI-1/2-C Longitudinal data (complete BL data) Section 5.3.2 81 MCI
ADNI-3-A BL data (only MRI data) Section 5.3.1 86 MCI
ADNI-3-C BL data (complete MRI and PET data) Section 5.3.2 86 MCI
OASIS-3-A BL data (only MRI data) Section 5.3.1 104 MCI
OASIS-3-C Longitudinal data (complete BL data) Section 5.3.2 65 CN/6 MCI/7 AD

where 𝑾 c and 𝒃c are learnable parameters for MCI conversion pre-
iction. The class imbalance in subjects was serious. Thus, focal cross-
ntropy loss was applied:

pred = −𝜇
(

1 − 𝑪̂
)𝛾 log

(

𝑪̂
)

(17)

here 𝜇 and 𝛾 are set to 0.3 and 2, respectively.
The overall loss function of our proposed method can be defined as

ollows:

= 𝜆Lest + 𝜁Ladv + 𝜉(Lcls + Lpred) (18)

here 𝜆, 𝜁 , and 𝜉 are hyperparameters. Hence, our model can be
rained in an end-to-end manner, and joint optimization for data impu-
ation, longitudinal classification, and MCI conversion prediction can
e achieved.

. Experiment

.1. Experimental settings

In this study, longitudinal and multimodal ROI features were used to
valuate the prediction and imputation performances of the proposed
ethod. As described in the ‘‘6. Materials’’ section, three ADNI subsets,

s well as the OASIS-3 database, were enrolled in our experiments.
oreover, the proposed method was implemented using PyTorch, and

ll experiments were performed on a server with NVIDIA TITAN X
Pascal) GPU. Moreover, the code of MCNet is publicly available at
ttps://github.com/Meiyan88/MCNET.

In the experiments, a hold-out method was used, and all subjects
rom the ADNI-1 and ADNI-2 datasets were partitioned into 10 non-
verlapping subsets with the same proportion of each class. Among
hich, eight subsets were applied for training, one was utilized for
alidation, and one was used for testing. For subjects in the training
et, data at all available time points were used to train the networks,
hereas only data at BL were used to select the hyperparameters and
valuate the networks for subjects in the validation and testing sets.
he data partitioning process was repeated five times, and the results
f the validation and testing sets were achieved in each process. The
inal results for the ADNI-1 and ADNI-2 datasets were obtained from
he average of five results in the testing set. The subjects in ADNI-

had FDG-PET scans at BL but had PET scans with other tracers
e.g., Pittsburgh compound B) at subsequent time points, which means
hat only the PET data at BL were available in ADNI-3 for testing. Differ-
nt from ADNI-3, OASIS-3 contained a certain amount of longitudinal
DG-PET data. However, in all subjects containing longitudinal MRI
nd PET data, subjects that belong to the MCI category were lacking.
ccording to the characteristics of different datasets, they were used in

he different experiments for performance assessment. See Table 5 for
etails.

.2. Implementation details

To alleviate the computational burden associated with hyperpa-
ameter tuning, the optimal combinations of hyperparameters were
elected from a pre-defined search range (Huang, Lai, et al., 2021;
hou et al., 2019). Under the premise of fixing other hyperparameters,
8

ertain hyperparameters were adjusted in each iteration. Thus, the a
yperparameters utilized in MCNet underwent meticulous tuning in
hree distinct steps, in each of which the hyperparameters were fixed
pon selection and the optimal ones were selected according to the
est average value of area under receiver operating characteristic curve
AUC) on the validation set. The steps are as follows: (a) First, the
yperparameters associated with the architecture of data imputation
odule were selected. Given that the architectures of different modules

n MCNet mainly consisted of FC layers, the primary hyperparameters
ere the layer and node numbers in the hidden layer. After determining

he hyperparameters associated with architecture, the data imputation
odule was trained initially to perform the data imputation task using

he corresponding losses listed in Eqs. (9)–(11). Subsequently, rele-
ant hyperparameters within the overall loss function were selected.
pecifically, the pre-defined search range are presented as follows: the
ayer number of MinimalRNN was selected from 1, 2, 3, and 4; the
ayer number of discriminator was chosen from 2, 3, 4, and 5; the
ode numbers of the hidden layers were selected from 64 to 512 with
nterval accumulation as multiples of 2; 𝜆 and 𝜁 varied from 0.1, 1,
, 10, 102, 103; the number of iterations for the discriminator after
ach imputation ranged from 1 to 5 with the interval of 1. (b) Second,
he hyperparameters of conversion prediction module were selected,
nvolving the head numbers 𝐽 and 𝐽 ′ in two cross-attention blocks.
he head numbers were selected from 2, 4, 6, and 8. Notably, the
imensions of projection matrices were obtained by dividing the head
umber with the node number in the hidden layer. Once the head
umbers were determined, the hidden features 𝑯𝑆 obtained from the
rained data imputation module were fed into the conversion prediction
odule for pre-training. Consequently, the first cross-attention block
as initially pre-trained using the longitudinal classification task and

he corresponding loss listed in Eq. (14). Then, the second cross-
ttention block was pre-trained using conversion prediction task and
oss listed in Eq. (16). (c) Third, the final hyperparameter 𝜉 was
elected from 1, 2, 10, 102, 103, and 104 to determine the overall model
rchitecture and loss function. Subsequently, the hyperparameters of
raining settings were selected from pre-defined search range. Adam
ptimizer was used during the training, and a 𝓁2-regularization was
pplied to avoid overfitting. Based on the results of AUC obtained from
he validation set, the weight decay coefficient for 𝓁2-regularization
as selected from 5 × 10−6 to 5 × 10−3 with interval accumulation as
ultiples of 10−1. Similarly, learning rate was selected within the range

f 5 × 10−5 to 5 × 10−1 with interval accumulation as multiples of 10−1.
astly, an end-to-end fine-tuning of the model was conducted using
nly BL data to obtain the final model.

In summary, two separate stacked three-layer MinimalRNNs were
sed to extract hidden features, with the node numbers in the hidden
ayers set to 128. Furthermore, with node numbers set to 90, 128, 64,
, the discriminator was trained alternately with the remaining parts of
he data imputation module. Specifically, after every two discriminator
terations, the module completed one round of data imputation. The hy-
erparameters 𝜆, 𝜁 , and 𝜉 in the overall loss function were set to 2, 10,
nd 10, respectively. The selected hyperparameters and corresponding
earch ranges are listed in Table 6.

Several quantitative metrics were used to evaluate the methods’
erformance in different tasks. Accuracy (ACC), AUC, and balanced
ccuracy (BAC) were applied for the prediction task, and MAE and root
ean square error (RMSE) were used for the quantitative evaluation of

he imputation task. AUC represents the probability that the predicted
ositive samples are ranked before the negative samples (Huang &
ing, 2005). BAC is the arithmetic mean of specificity and sensitiv-
ty (Brodersen, Ong, Stephan, & Buhmann, 2010). Both AUC and BAC
re more informative than ACC in reflecting the model performance
n class-imbalanced datasets (Brodersen et al., 2010; Lai et al., 2022).
oreover, MAE was used to calculate the average absolute difference

etween imputed and real data, whereas RMSE reflects the standard
eviation of the differences. Although both MAE and RMSE measure the

verage error of imputed data, MAE presents an unbiased measure of

https://github.com/Meiyan88/MCNET
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Table 6
Hyperparameter search space and selected hyperparameters.

Hyperparameters Search space Selected value

MinimalRNN layers number [1, 2, 3, 4] 3
MinimalRNN hidden dimension [64, 128, 256, 512] 128
Heads number 𝐽 [2, 4, 6, 8] 4
Heads number 𝐽 ′ [2, 4, 6, 8] 4
𝜆 [0.1, 1, 2, 10, 102 , 103] 2
𝜁 [0.1, 1, 2, 10, 102 , 103] 10
𝜉 [1, 2, 10, 102 , 103 , 104] 10
Learning rate [5 × 10−5 , 5 × 10−4 , 5 × 10−3 , 5 × 10−2 , 5 × 10−1] 5 × 10−3

Weight decay [5 × 10−6 , 5 × 10−5 , 5 × 10−4 , 5 × 10−3] 5 × 10−4

Table 7
Ablation experiments of the proposed method on different datasets for MCI conversion
prediction.
Method ADNI-1/2-A ADNI-3-A OASIS-3-A Parameter

size (M)
Inference
time
(ms)ACC AUC BAC ACC AUC BAC ACC AUC BAC

MCNet-oLC 0.813 ± 0.023 0.832 ± 0.038 0.795 ± 0.024 0.802 0.806 0.789 0.808 0.825 0.772 2.603 0.131
MCNet-oCB 0.815 ± 0.014 0.826 ± 0.030 0.808 ± 0.011 0.813 0.819 0.802 0.817 0.820 0.798 1.337 0.084

CNet-oDI 0.802 ± 0.029 0.818 ± 0.026 0.798 ± 0.027 0.756 0.765 0.761 0.817 0.806 0.786 2.372 0.057
CNet-oImp 0.799 ± 0.035 0.794 ± 0.035 0.787 ± 0.037 0.733 0.739 0.748 0.779 0.784 0.750 1.589 0.049
CNet-oAL 0.812 ± 0.030 0.824 ± 0.024 0.803 ± 0.026 0.791 0.821 0.782 0.798 0.838 0.801 2.604 0.134
CNet 0.830 ± 0.019 0.842 ± 0.032 0.813 ± 0.032 0.802 0.849 0.820 0.827 0.857 0.799 2.604 0.134

average error whereas RMSE exhibits bias by assigning greater weight
to imputed data with large errors over small ones (Fu, Wu, Ponnarasu,
& Zhang, 2023). Paired t -test (at 95% significance level) was conducted
for statistical significance test in the prediction task. Finally, parameter
sizes and inference time of all compared methods were presented
to provide a more comprehensive and deeper understanding of the
proposed MCNet.

5.3. Experimental results and analysis

5.3.1. Ablation study
In this section, each of the components in the proposed method is

removed separately to investigate its influence on the prediction per-
formance. Table 7 shows the results of all ablation experiments, which
are carried out on the ADNI-1 and ADNI-2 testing sets (ADNI-1/2-A)
and two other independent testing sets (ADNI-3-A and OASIS-3-A).
Five variants of MCNet are included for ablation study, which are
denoted as MCNet-oLC, MCNet-oCB, MCNet-oDI, MCNet-oImp, MCNet-
oAL, respectively. Specifically, MCNet-oLC discards the longitudinal
classification; MCNet-oCB removes cross-attention blocks; MCNet-oDI
removes the data imputation task by imputing mean values; MCNet-
oImp removes the data imputation task without any imputation; and
MCNet-oAL eliminates the adversarial learning strategy.

First, compared with MCNet-oLC, discarding longitudinal classifi-
cation results in reduced performance in MCI conversion prediction,
which indicates the usefulness of multi-task learning strategy. More-
over, removing the longitudinal classification task results in a more
pronounced decrease in BAC (1% and 1.8% decrease in AUC and
BAC, respectively). The possible reason is that our longitudinal task
of predicting whether conversion occurs at each time point is par-
ticularly beneficial for identifying pMCI subjects, and thus removing
the longitudinal classification task results in severely reduced BAC.
Second, the removal of cross-attention blocks in MCNet-oCB leads to
the direct concatenation of multimodal features at different time points.
Although MCNet-oCB exhibits higher accuracy (81.3% vs. 80.2%) on
ADNI-3, MCNet outperforms MCNet-oCB in other metrics, which is pri-
marily due to class imbalance. The inferior performance of MCNet-oCB
implies that considering the relationships among different modalities
at different time points plays an important role in MCI conversion
prediction. Third, when the data imputation task (i.e., the entire data
imputation module) is omitted in MCNet-oDI, all missing data are
imputed with mean values and the corresponding imputation loss in
Eq. (9) is removed. The MCI conversion prediction clearly decreases in
performance, proving the effectiveness of using a unified framework for
imputation and prediction. Fourth, in MCNet-oImp, the data imputation
9

task is also removed, and the missing data are processed through a
masking layer without data imputation as mentioned in Cui et al.
(2019). Given the variation in the number of hidden features obtained
from different modalities, only first cross-attention block is applied
to fuse the last hidden features and use them to achieve conversion
prediction. The inferior results of MCNet-oImp compared with MCNet-
oDI (ADNI-1/2-A: 79.9% vs. 80.2% in ACC, 79.4% vs. 81.8% in AUC,
and 78.7% vs. 79.8% in BAC) demonstrate that the absence of data
imputation leads to further performance degradation, which may be
attributed to the fact that imputed data ensures alignment of all time-
point data for all samples. Additionally, without data imputation, the
effectiveness of our cross-attention strategy is partially compromised.
Fifth, the performance of MCI conversion prediction decreases when
the adversarial learning module is eliminated in MCNet-oAL. Moreover,
after the removal of adversarial learning, the imputation errors are
tested on ADNI-1/2-A and compared with those generated by MCNet,
namely, 0.049 and 0.063 decrease in MAE and RMSE, respectively.
Thus, the results prove that the adversarial learning module can help
further reduce imputation errors and improve prediction performance.
In terms of parameter size and inference time, both the data imputation
and disease prediction modules occupy almost an equal portion of
the parameters. Additionally, the imputation in the data imputation
module and the self-attention mechanism of the cross-attention network
in the disease prediction module result in the prolonged inference
time of the model. However, overall, the current inference speed and
parameter size remain within reasonable limits.

In summary, the proposed method achieves the best prediction
performance, indicating that the proposed components are useful for
MCI conversion prediction. Moreover, the proposed method achieves
AUCs of 0.849 and 0.857 on two independent testing sets under the
situation of using only MRI, which demonstrates that imputation from
the multimodal view can effectively ensure the prediction performance
when only MRI is used at BL. Moreover, the results also prove that
our method is flexible in data requirements and can achieve reasonable
performance without PET data.

5.3.2. Comparison with other methods
To demonstrate the performance of MCNet, several methods are

used for comparison. Among them, four methods that can also be
used to deal with incomplete multimodal and longitudinal data are
applied to compare with the prediction and imputation performances
of MCNet. Furthermore, to prove that MCNet is more effective than
the method of using data at BL or cross-sectional data alone, two other
methods based on support vector machine (SVM) and MLP are included
in the comparison. In addition to using models for imputing, several
traditional missing data imputation methods can be used to handle
missing data issue. Therefore, two variants of MCNet are included in
the comparison (i.e., MCNet-Forward and MCNet-Linear). The brief
introductions of different methods are as follows:

• SVM-based method: The classifier is implemented by SVM with
linear kernel. All ROI features are first simply concatenated and
directly fed into the classifier.

• MLP-based method: The MLP-based method for MCI conversion
prediction consists of three MLPs. ROI features of MRI and PET
are first fed into two separate MLPs to obtain modality-specific
hidden features. Then, the modality-specific hidden features are
concatenated and fed into another MLP to obtain the prediction
results.

• GRU-D (Che et al., 2018): A GRU-based method that designs a
decay mechanism using the information on the interval and loca-
tion of missing values, and combines decay rates with longitudi-
nal data containing missing values to accomplish classification.

• LSTM-Robust (Ghazi et al., 2019): A robust backpropagation
is presented through time algorithm by initializing the missing
values of inputs to zero and backpropagating zero errors corre-

sponding to the missing values of outputs when training. This
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Table 8
Imputation errors and prediction performance of different methods. The results of ADNI-1/2-C are reported as mean ± std, and * denotes significant difference with p-value <
0.05. Data imputation cannot be implemented in GRU-D, SVM-based method, and MLP-based method, and thus metrics related to imputation performance are represented by ‘—’
Method ADNI-1/2-C OASIS-3-C ADNI-3-C Parameter

size (M)
Inference
time
(ms)MAE(MRI) RMSE(MRI) MAE(PET) RMSE(PET) ACC AUC BCA MAE(MRI) RMSE(MRI) MAE(PET) RMSE(PET) ACC AUC BCA

SVM-based – – – – 0.732 ± 0.023 0.777 ± 0.024 0.723 ± 0.043 – – – – 0.720 0.753 0.697 – 0.123
MLP-based – – – – 0.766 ± 0.027 0.790 ± 0.024 0.738 ± 0.033 – – – – 0.773 0.761 0.755 0.334 0.037
LSTM-Robust 0.686 ± 0.050 1.010 ± 0.065 0.815 ± 0.101 1.049 ± 0.130 0.807 ± 0.021 0.774 ± 0.021 0.774 ± 0.021 0.807 1.027 1.016 1.321 0.760 0.768 0.768 2.979 0.132
GRU-D – – – – 0.803 ± 0.038 0.816 ± 0.031 0.795 ± 0.026 – – – – 0.773 0.819 0.775 5.135 0.147
BLS-LSTM 0.377 ± 0.051 0.539 ± 0.063 0.483 ± 0.045 0.607 ± 0.097 0.831 ± 0.037 0.827 ± 0.025 0.805 ± 0.028 0.436 0.589 0.667 0.773 0.800 0.834 0.820 5.358 0.096
AJRNN 0.363 ± 0.043 0.511 ± 0.067 0.428 ± 0.036 0.551 ± 0.046 0.831 ± 0.024 0.830 ± 0.016 0.810 ± 0.017 0.398 0.517 0.652 0.746 0.800 0.829 0.828 4.479 0.153
DRM 0.403 ± 0.042 0.574 ± 0.042 0.530 ± 0.015 0.699 ± 0.015 0.821 ± 0.025 0.819 ± 0.030 0.819 ± 0.030 0.588 0.710 0.781 0.891 0.813 0.818 0.813 3.695 0.127
MCNet-Linear 0.379 ± 0.078 0.598 ± 0.077 0.471 ± 0.055 0.607 ± 0.048 0.828 ± 0.012 0.821 ± 0.012 0.803 ± 0.007 0.512 0.690 0.631 0.704 0.773 0.801 0.775 2.604 0.117
MCNet-Forward 0.370 ± 0.039 0.538 ± 0.043 0.516 ± 0.068 0.705 ± 0.029 0.826 ± 0.015 0.829 ± 0.028 0.806 ± 0.007 0.420 0.601 0.677 0.788 0.787 0.804 0.783 2.604 0.117
MCNet* 0.322 ± 0.034 0.468 ± 0.062 0.415 ± 0.031 0.513 ± 0.043 0.842 ± 0.012 0.860 ± 0.024 0.830 ± 0.011 0.372 0.519 0.621 0.733 0.813 0.845 0.821 2.604 0.134
algorithm is used in the missing data estimation of longitudinal
data, and a two-stage method is used by performing imputation
first and then classification.

• Adversarial Joint-learning RNN (AJRNN) (Ma et al., 2022): An
end-to-end model is trained in an adversarial and joint learning
manner, which can directly perform classification with missing
values and greatly reduce the error propagation from imputation
to classification.

• Deep Recurrent Model (DRM) (Jung et al., 2021): A unified
framework that applies multivariate and temporal relations in-
herent in longitudinal and multimodal data to achieve missing
value imputation and model disease progression. The prediction
result of each subject is obtained using the longitudinal predicted
labels acquired from the disease progression task.

• Board learning system and long short-term memory neural net-
work (BLS-LSTM): A method that utilizes board learning system
(BLS) to enhance features and then feeds them into an LSTM net-
work for data prediction/imputation. BLS-LSTM can be directly
applied to impute ROI features, and hidden features from all
time points are concatenated to achieve conversion prediction.

• MCNet-Forward: A forward filling strategy (Nguyen et al., 2020)
is utilized, missing values are imputed with the available data
of the last previous time point. Specifically, other components
except for the imputation strategy proposed in our method are
retained in MCNet-Forward.

• MCNet-Linear: A linear filling strategy (Nguyen et al., 2020)
is applied to impute missing data by using the available data
between the previous and the next time point. Moreover, if there
is no future observed data for linear filling, then forward filling
is utilized. Other settings are consistent with MCNet-Forward.

Different from the proposed method, complete multimodal data
t BL are required for the compared methods (i.e., GRU-D, LSTM-
obust, AJRNN, and DRM). Therefore, the proposed method was also
erformed on the same subject number (i.e., ADNI-1/2-C, ADNI-3-C,
nd OASIS-3-C) used in the compared methods for a fair comparison.
imilar to the proposed method, only multimodal data at BL were
ncluded in the validation and testing sets for the compared methods.
pecially, same longitudinal data as other methods were adopted for
he training and testing of SVM- and MLP-based methods, and each
ime point of each subject can be treated as a separate subject when
raining. Moreover, the missing PET data were filled by the mean
alue at each category at the training process of SVM and MLP. For
ll compared methods, a hold-out method was used, and the hyperpa-
ameters were turned carefully according to their corresponding papers
o make a fair comparison. Furthermore, a similar training strategy
as adopted across all methods to ensure consistency. This strategy
rimarily involves utilizing training sets that exclusively retain BL data
or fine-tuning in the final stage.

Data imputation may affect the extracted features for final MCI
onversion prediction. Thus, the imputation errors are quantitatively
nalyzed on different data imputation methods (i.e., LSTM-Robust,
JRNN, DRM, MCNet, MCNet-Forward, and MCNet-Linear). During
10

he process of data imputation, all data were estimated regardless of
whether the data were missing or not; thus, the data without any miss-
ing data can be used as ground truth to evaluate imputation errors. As
shown in Table 8, AJRNN and DRM have better imputation results than
LSTM-Robust, which indicates that the model based on zero initializa-
tion may not be suitable for our data. Methods with better imputation
performance also exhibit better performance in conversion prediction,
indicating that imputation performance is a critical factor in determin-
ing prediction performance. In comparison with the compared methods,
a multi-view imputation combined with adversarial learning strategy
is designed in the proposed method to handle missing data issues
in various scenarios. The most important advantage of the proposed
method is its ability to deal with missing PET data at BL. Moreover, the
inclusion of adversarial learning makes the data distribution close to
the real one, thereby further reducing imputation errors and improving
the prediction performance. Compared with two variants of MCNet,
our proposed method achieves better results, which indicates that the
strategy of data imputation via model learning is more effective than
traditional missing data imputation methods. Therefore, the proposed
method achieves significantly accurate imputation values compared
with the other methods (p-value < 0.05).

The main goal of this study is MCI conversion prediction (i.e., pMCI
vs. sMCI) and the performance of all methods are presented in Table 8
with the following findings: First, the results of SVM and MLP are
generally lower than those of other RNN-based methods, which demon-
strates the feasibility of using longitudinal data during training phase
to capture disease progression information and to improve prediction
performance at BL. Second, except for SVM and MLP, the lowest MCI
conversion prediction results are found in LSTM-Robust. The possible
reason is that LSTM-Robust is a two-stage method, in which data
imputation and MCI conversion prediction are performed separately,
and thus suboptimal results may be obtained. Moreover, poor im-
putation performance results in degraded prediction performance in
LSTM-Robust. Third, the prediction performances of AJRNN and DRM
are better than that of GRU-D, which indicates the effectiveness of
incorporating data imputation and conversion prediction into a unified
framework. Fourth, BLS-LSTM achieves a higher prediction accuracy
than DRM, in which the interval information of missing data is applied
to assist in imputation. However, when only BL data are present, the
interval information is lacking and may lead to poor imputation results
and inferior prediction performance in DRM. Fifth, a comparison with
AJRNN and MCNet reveals that BLS-LSTM performs worse in both
imputation and prediction. This finding underscores the potential of ad-
versarial learning in further enhancing data imputation and prediction,
particularly in situations involving solely BL data. Sixth, results show
that the proposed method achieves the best performance. The proposed
and benchmark methods show a significant difference (p-value < 0.05),
which implies that the proposed method can be used as a practical
and general learning framework for MCI conversion prediction on
incomplete longitudinal and multimodal data. Furthermore, the results
of MCNet on ADNI-3-A (Table 7) and ADNI-3-C (Table 8) shows only
minor differences, confirming that MCNet can achieve reasonable per-
formance when only MRI data are available at BL. In terms of parameter
size, MCNet holds an advantage over most of the compared methods
(except for MLP-based method) due to its MinimalRNN-based backbone

network with an inherently small parameter size. This reduction in
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Fig. 3. Visualization results of the top-10 ROIs of different modalities at each time point, where M06, M12, M24, and M36 represent 6, 12, 24, and 36 months, respectively.
parameters helps prevent model overfitting. In terms of inference time,
our approach remains comparable to other methods and maintains a
similar level of efficiency.

5.3.3. Interpretability of the proposed method
The interpretability of the model is crucial for clinical prediction

and can help us discover some potential information associated with
AD. Therefore, the 10 most discriminative ROIs of different modali-
ties at different time points are illustrated, and their corresponding
interpretations are provided.

We introduce a gradient-based computation strategy that compute
the contribution of each ROI to longitudinal classification at each time
point to locate the most discriminative ROIs (Huang, Lai, et al., 2021).
Therefore, based on the contribution values, we screen out the top-10
ROIs of different modalities at different time points. Specifically, for
the 𝑟th ROI of modality 𝑆 at the 𝑡th time point 𝑿𝑆

(𝑡)(𝑟) ∈ R𝑁×1×1, the
derivatives of the predicted probability 𝒚̂(𝑡) of the subjects with AD
with regard to 𝑿𝑆

(𝑡)(𝑟) is obtained from the longitudinal classification
task, and the absolute value of the derivative among all subjects is
averaged as the contribution. The visualization results of the top-10
ROIs of different modalities at each time point are shown in Fig. 3. For
MRI, the hippocampus, parahippocampal gyrus, and amygdala, which
are highly correlated with memory, are detected at each time point.
Higher contribution values are achieved at 6 and 12 months than at
other time points. Moreover, the volume atrophy of these three ROIs is
associated with healthy aging and different stages of AD (Teipel et al.,
2006). On the contrary, the parahippocampal gyrus and amygdala
are detected at the first two time points, and the hippocampus is
detected at the last four time points for PET. Besides, the temporal
pole, which is linked to visual cognition (Herlin, Navarro, & Dupont,
2021), is also detected at most time points in MRI instead of PET.
The posterior cingulate gyrus is an important area detected by PET,
and the remarkable metabolism reduction in the region is associated
with memory impairment, which is a feature of early AD (Minoshima
et al., 1997). Furthermore, the precuneus, which is associated with a
high level of cognitive function (Cavanna & Trimble, 2006), is explored
by PET data at most time points. Moreover, the contributions of the
detected ROIs varies across different time points and are also worthy
of further study.

6. Discussion

6.1. Effect of hyperparameters

In this section, we carry out a comprehensive analysis of the influ-
ence of hyperparameters on the MCNet. Specifically, we examined the
influence of the hyperparameters listed in Table 6 on the prediction
performance. For each iteration, we systematically adjusted a pair
of hyperparameters while keeping the others fixed at their optimal
11
Fig. 4. Variations in performance of conversion prediction under different
hyperparameters.

values. Moreover, the pre-defined ranges of the hyperparameters are
elaborated upon in ‘‘5.2. Implementation Details’’ section. Fig. 4 shows
the AUC of conversion prediction achieved by MCNet with different
hyperparameters. On the basis of the results, we observed that exces-
sively high values of 𝜆 (>10) and 𝜁 (>10) significantly deteriorate the
prediction performance. This decline can be attributed to the model
overly prioritizing the data imputation task, thereby neglecting the
optimization for the prediction task. Hence, to maintain an appropriate
balance between the ratios of 𝜆, 𝜁 , and 𝜉 is essential. Furthermore,
in configuring an excessive head number for cross-attention blocks, a
large learning rate or weight decay value can have an adverse effect on
network optimization causing the reduced prediction performance. The
optimal hyperparameters for MCNet have been summarized in Table 6.

6.2. Effect of training set size

In this section, we investigate the performance variations of MC-
Net under different training set sizes. While keeping the testing sets
unchanged, we evaluated the performance of MCNet using different
proportions of the total training sets from 100% down to 30%. Specif-
ically, we discuss the performance of different trained models in two
scenarios; one including both MRI and PET data (ADNI-1/2-C) and
the other including only MRI data (ADNI-3-A). Fig. 5 presents the
corresponding results, where a decrease in the training set size leads
to a consistent decline in the overall model performance. However,
the reduction in the training set size results in a faster decline in
model performance when using a dataset composed solely of MRI data
(ADNI-3-A) compared with using datasets that simultaneously include
both MRI and PET data (ADNI-1/2-C). The extreme case of having
only PET data is more reliant on the assurance of data imputation
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Fig. 5. Variations in performance of conversion prediction under different training set
sizes.

capability, thereby potentially increasing the sensitivity to changes in
the training set size. This observation may be ascribed to the fact that
such extreme cases place much emphasis on the reliability of data
imputation, which consequently exhibits a heightened sensitivity to
variations in the training set size. Furthermore, the model trained with
50% of the training set size outperforms the one trained with 60%
on certain metrics (AUC and BAC on ADNI-1/2-C, ACC on ADNI-3-C).
This discrepancy in performance can be attributed to the randomness
involved in the data removal during down-sampling, where certain
samples with a negative effect on training may be unintentionally
excluded. In summary, with the availability of MRI and PET data at
BL, training the model using only 50% of the training set size yields an
AUC performance exceeding 80%.

6.3. Comparison with other methods

Conventional methods that use longitudinal data modeling primar-
ily concentrate on utilizing all available data to predict the clinical
status at the subsequent time point. The subsequent time point refers
to the next time point following the last time point in the longitu-
dinal data. However, our specific emphasis lies in leveraging disease
progression information from longitudinal data to facilitate early-stage
conversion prediction. Thus, approaches such as GRU-D, DRM, and
LSTM-Robust may not be well-suited for our specific emphasis. GRU-
D and DRM utilize the time intervals between adjacent available data
and locations of missing data to assist in imputation or prediction.
However, this mechanism leads to uniformity of the above information
across all samples when only BL data are available, rendering this
strategy ineffective. For LSTM-Robust, the loss computation and gra-
dient propagation are both dependent on the quantity of missing data
and aim to mitigate its adverse effects. However, under the extreme
scenario where only BL data are available, this strategy becomes nearly
ineffective. In BLS-LSTM, the BLS technique can be used to enhance
features from all time points, and thus also has certain effects when
only BL data are available. However, BLS-LSTM does not incorporate
any additional specialized strategies, resulting in its performance being
lower than those of AJRNN and MCNet. By contrast, AJRNN and
the proposed MCNet achieve higher AUC values than the previous
methods (83.0% in AJRNN and 86.0% in MCNet vs. 77.4% in LSTM-
Robust, 81.6% in GRU-D, 82.7% in BLS-LSTM, and DRM: 81.9%). This
improvement can be attributed to the adversarial imputation strategy
in AJRNN and MCNet, which effectively reduce the errors caused by
continuous forward imputation when only BL data are present. Another
advantage of MCNet lies in ensuring the maximum amount of training
data, which is primarily achieved through the proposed multi-view
imputation strategy. The quantity of data directly affects the model
12
generalization and reliability. Given an equal amount of training data,
MCNet outperforms AJRNN in handling multimodal data (ACC: 84.2%
vs. 83.1%; AUC: 86.0% vs. 83.1%; BAC: 83.0% vs. 81.0%), primarily
due to the incorporation of cross-attention blocks. Specifically, the
self-attention mechanism used in the two cross attention blocks helps
MCNet fully exploit the relationships between modalities and time
points, respectively.

6.4. Limitations and future works

Several issues must be addressed in future research. First, although
1530 subjects are included for training in this study, this number
remains insufficient to fully exploit the potential of deep learning.
Moreover, a limited sample size may lead to model overfitting. In
the future, more samples can be collected through collaboration with
clinicians instead of using publicly available datasets. Second, our
model is built based on the ROI features extracted from neuroimages,
resulting in the loss of spatial information of ROIs. Such information
must be introduced in future work.

Only PET and MRI data are included for analysis in this study.
Increasing neuroimaging modalities, such as functional MRI (fMRI)
and diffusion tensor imaging (DTI), are proven to be effective for
AD diagnosis. In fMRI, the prevalent analysis approach involves con-
structing functional connectivity networks, and subjects undergoing the
conversion to AD demonstrate aberrant alterations in specific func-
tional connections (Liebe et al., 2022). In DTI, structural differences in
white matter are observed, which can be effective in conversion pre-
diction (Velazquez & Lee, 2022). Hence, an interesting topic for study
is the efficient integration of information from other modalities into
our framework. One straightforward approach is to extend MCNet with
additional stacked MinimalRNNs to analyze more than two modalities.
Another reasonable direction is to establish a graph-based analytical
model. Functional connectivity networks constructed from fMRI data
are highly compatible for graph analysis. ROI features generated based
on brain regions are also well-suited as node features in the graph. Fur-
thermore, the construction of graphs partially addresses the challenge
of losing spatial information.

7. Conclusion

In this study, we propose an end-to-end multi-task deep learn-
ing framework for MCI conversion prediction. A multi-view impu-
tation method combined with adversarial learning is developed for
incomplete longitudinal and multimodal data to handle missing data.
Moreover, cross-attention blocks are introduced to explore crucial in-
formation of different modalities at different time points, which can
contribute to the achievement of accurate MCI conversion prediction.
The proposed method is trained on two ADNI datasets with 1301
subjects. Moreover, two independent testing sets are applied to further
evaluate the generalization ability of the proposed method. Based
on the experiments, the proposed method achieves high accuracy in
missing data imputation and MCI conversion prediction and performs
well when only MRI data were available at BL. To our best knowledge,
no research has combined longitudinal and multimodal associations to
achieve multi-view adversarial imputation at different time points with
small errors, performed AD classification and prediction in the same
framework for the joint optimization of MCI conversion prediction, and
achieved satisfying the results of MCI conversion prediction using only
single-modal data at BL during testing. Therefore, the proposed method
may be a crucial tool for MCI conversion prediction, diagnosis, and
monitoring.
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